

Informatique 3A MFI Automne 2021

Examen du 13 Décembre 2021

Durée: 1,5 heure(s)

Documents autorisés : OUI \boxtimes NON \square

Polycopiés de l'UE, notes manuscrites. Livres et Internet interdits

Calculatrice autorisée : OUI \boxtimes NON \square

Tout type

Exercice 1.

(1) On entend souvent dans les médias, le type d'affirmation suivant : "En 2021, le gaz a augmenté de $10\,\%$, puis de $15\,\%$, ce qui fait une augmentation totale de $25\,\%$? "

Que pensez-vous de cette affirmation?

(2) Elle est en fait, "à peu près vraie" dans un cas et ce, indépendamment du prix initial. Lequel?

Exercice 2.

Déterminer le développement limité en 0 à l'ordre 4 de $f(x) = \ln(\cos(x))$.

Exercice 3.

(1) Étudier la fonction suivante

$$\forall x > 0, \quad f(x) = \ln(x) - x,$$

et tracer son graphique.

(2) On considère la fonction suivante

$$f(x) = e^x - x - 1.$$

- (a) Étudier cette fonction sur \mathbb{R} .
- (b) (i) Tracer la tangente à la fonction e^x au point x=0.
 - (ii) Pouvez-vous en donner son équation?
 - (iii) Déduire de la question (2a) la position de la courbe représentatrice de l'exponentielle par rapport à cette tangente.

Exercice 4.

(1) Soient $k \in \mathbb{R}^*$, $y_0 \in \mathbb{R}_+^*$ et $t_0 \in \mathbb{R}$. Montrer que la solution de l'équation différentielle

$$y'(t) = ky(t), (1a)$$

$$y(t_0) = y_0, (1b)$$

est donnée par

$$y(t) = y_0 e^{k(t - t_0)}. (2)$$

(2) Soient $\alpha \in \mathbb{R}_+^* \setminus \{1\}$ et $\tau \in \mathbb{R}_+^*$. Montrer que si y est donnée par (1), alors

$$(\forall t \ge t_0, \quad y(t+\tau) = \alpha y(t)) \iff k\tau = \ln \alpha. \tag{3}$$

- (3) Montrer que si $a \in \mathbb{R}_+^* \setminus \{1\}$, la fonction réciproque de \ln_a est $x \mapsto a^x$.
- (4) Supposons que y vérifie (1) et que soient connues des données expérimentalement mesurées notées $(t_i, Z_i)_{1 \le i \le N}$ avec

$$\forall i \in \{1, ..., N\}, \quad Z_i = \ln_{10}(y(t_i)). \tag{4}$$

(a)

Montrer que l'on alors

$$\forall i \in \{1, \dots, N\}, \quad Z_i = At_i + B, \tag{5a}$$

avec

$$A = \frac{k}{\ln(10)}. (5b)$$

(b)

Que peut-on en déduire?

(c)

Nous présentons dans le tableau 1, issu de http://fr.wikipedia.org/wiki/Loi_de_Moore, le logarithme décimal du nombre de transistors par puce de silicium entre 1970 et 2010. Tracer un graphique $(t_i, Z_i)_{1 \leq i \leq N}$. En supposant que ce nombre y(t) suit la loi donnée par (2), déduire une détermination graphique de la valeur τ en utilisant ce qui précède et la mesure d'une pente de droite.

- (d) Tracer sur le graphique déjà fait, la droite correspondant à un doublement du nombre de transistors tous les 18 mois, passant par le point de coordonnées (t_1, Z_1) . Commenter.
- (5) Question facultative
 - (a) Est-ce que (1) (qui est équivalent à (2)) est équivalent à

$$\forall t \ge t_0, \quad y(t+\tau) = \alpha y(t) \quad ? \tag{6}$$

(b) Quelle condition nécessaire et suffisante à (1) (qui est équivalent à (2)) pourriez-vous adjoindre à (6)?

Exercice 5.

- (1) Rappeler les définitions des suites arithmétiques, géométriques et arithmético-géométriques.
- (2) Rappeler les expressions explicites des suites arithmétiques, géométriques et arithmético-géométriques.
- (3) Dans quel cas, chacune de ces suite est-elle convergente?

t_i	Z_i
1970.8878	3.3871
1979.0259	4.4839
1981.9359	5.1505
1984.9445	5.4731
1988.9889	6.0968
1992.9840	6.5054
1995.0062	6.7634
1996.8804	6.8710
1999.0506	7.4516
2001.0234	7.4086
2000.9741	7.6452
2001.9605	8.3763
2004.0321	8.1398
2004.0321	8.8280

TABLE 1. données $(t_i, Z_i)_{1 \le i \le N}$.

(4) Dans quel cas, chacune des séries associée à ces suites est-elle convergente?

Exercice 6.

(1) (a) Montrer qu'en base 10, on a

$$1 = 0,999....$$

- (b) Est-ce un paradoxe?
- (2) Dans cet cette question, on se place en base 10.
 - (a) Quel nombre rationnel est égal à 0,123123123... (le développement est périodique de période 123)?
 - (b) En généralisant, montrer que tout nombre dont l'écriture en base 10 est périodique à partir d'un certain rang, est égal à un nombre rationnel.

Corrigé

Un corrigé sera disponible sur http://utbmjb.chez-alice.fr/Polytech/index.html