





Mécanique 3A MNB Automne 2022

## QCM (maison) pour le 16 novembre 2022

#### Important:

Les questions faisant apparaı̂tre le symbole  $\clubsuit$  peuvent présenter aucune, une ou plusieurs bonnes réponses. Les autres questions ont une unique bonne réponse.

Ce QCM est en principe modifiable à l'écran et vous devez cocher les cases manuellement. En cas d'erreur, vous pouvez les cocher ou décocher autant de fois que nécesaire .

#### Corrigé

Un corrigé sera disponible sur http://utbmjb.chez-alice.fr/Polytech/index.html

HAUNIME Anne

## section A.1 (annexes du corrigé de TD)

**Question 1** On connaît les valeurs d'une fonction f aux points  $x_0 = 0$ ,  $x_1 = 1$ ,  $x_2 = 2$  et  $x_3 = 3$  données par

$$f(x_0) = 3$$
,  $f(x_1) = 7$ ,  $f(x_2) = 23$ ,  $f(x_3) = 57$ .

 $\Pi_3,$  le polynôme d'interpolation de f sur le support  $\{x_0,x_1,x_2,x_3\},$  est égal à

$$x^3 + 3x^2 + 3$$
 0  
  $3x^3 + 9x^2 + 3$   $x^6$ 

Question 2 On connaît les valeurs d'une fonction f aux points  $x_0 = 0$ ,  $x_1 = 1$ ,  $x_2 = 2$  et  $x_3 = 3$  données par

$$f(x_0) = 0$$
,  $f(x_1) = 0.8414710$ ,  $f(x_2) = 0.9092974$ ,  $f(x_3) = 0.1411200$ .

 $\Pi_3$ , le polynôme d'interpolation de f sur le support  $\{x_0, x_1, x_2, x_3\}$ , est égal à

 $\Pi_3(x) = -0.0103932x^3 - 0.3556426x^2 + 1.2075068x$ 

 $\Pi_3(x) = -0.0103932x^3 - 0.3556426x^2 + 1.2075068x + 3$ 

 $\Pi_3(x) = -0.0103932x^3 - 0.3556426x^2 + 1.2075068x + 6$ 

 $\Pi_3(x) = -0.0103932x^3 + 7$ 

Question 3  $\clubsuit$  On connaît les valeurs d'une fonction f aux points  $x_0 = 1$ ,  $x_1 = 2$  et  $x_2 = 3$  données par

$$f(x_0) = 5$$
,  $f(x_1) = 16$ ,  $f(x_2) = 31$ .

 $\Pi_2,$  le polynôme d'interpolation de f sur le support  $\{x_0,x_1,x_2\},$  est égal à

$$2x^{2} + 5x - 2$$
  $2x^{2} + 17x + 13$   $(x - 1)(2x + 7) + 5$   $2x^{2} + 10x + 3$ 

$$2x^2 + 21x + 18$$
 Aucune de ces réponses n'est correcte.

**Question 4** Parmi les figures 1 de la page 3, celle qui représente les polynômes de Lagrange relatifs au support défini par les points :

$$x_0 = 0$$
,  $x_1 = 1$ ,  $x_2 = 2$ ,  $x_3 = 3$ ,

est la figure :

$$1(a)$$
  $1(b)$   $1(c)$   $1(d)$   $1(e)$ 

# Question 5

On connaît les valeurs d'une fonction f aux points  $(x_i)_{0 \le i \le 3}$  données par

$$x_0 = 0, \quad x_1 = 1, \quad x_2 = 2, \quad x_3 = 3,$$

$$y_0 = 2$$
,  $y_1 = 5$ ,  $y_2 = 3$ ,  $y_3 = 8$ ,

Sur la figure 2 de la page 4, le polynôme interpolateur  $\Pi_3$  de f sur le support  $\{x_0, x_1, x_2, x_3\}$  est representé en trait

continu 
$$\text{tiret-point }(-.)$$
  $\text{tiret-tiret }(--)$ 



Question 7 Soient  $x_0 = A < x_1 < \dots < x_N = B$  des points qui divisent I = [A, B]. On note  $I_j = [x_{j-1}, x_j]$  les sous-intervalles de longueur  $h_j$  et  $h = \max_{1 \le j \le N} h_j$ . Sur chaque sous-intervalle  $I_j$ , on interpole  $f_{|I_j|}$  par un polynôme de degré n avec des points équirépartis. Le polynôme par morceaux est noté  $\Pi_n^h f(x)$ . Un majorant de l'erreur commise dans l'interpolation par morceaux est danné par

$$\frac{\text{dans l'interpolation par morceaux est donné par}}{\frac{1}{4(n+1)n^{n+1}} \max_{x \in [A,B]} \left| f^{(n+1)}(x) \right| h^{n+1}} \\ \frac{\frac{(B-A)^{n+1}}{4(n+1)n^{n+1}} \max_{x \in [A,B]} \left| f^{(n+1)}(x) \right| \frac{1}{N^{n+1}}}{\frac{1}{8(n+1)n^{n+1}} \max_{x \in [A,B]} \left| f^{(n+3)}(x) \right| h^{n+1}}$$

# section A.2 (annexes du corrigé de TD)

inférieur ou égal à  $\boldsymbol{n}$ 

Question 8 La méthode d'intégration élémentaire de Simpson sur l'intervalle 
$$[a,b]$$
 est donnée par  $\frac{1}{6}(b-a)(f(a)+4f((a+b)/2)+f(b))$   $\frac{1}{6}(b-a)(f(a)+5f((a+b)/2)+f(b))$   $\frac{1}{16}(b-a)(f(a)+4f((a+b)/2)+f(b))$ 

Question 9  $\clubsuit$  La méthode d'intégration composite des trapèzes sur l'intervalle [A,B], avec N sous-intervalles est donnée par

$$\frac{h}{2}(f(A) + f(B)) + h \sum_{i=1}^{N-1} f(x_i)$$

$$h(f(A) + f(B)) + \frac{h}{2} \sum_{i=1}^{N-1} f(x_i)$$

$$\frac{h}{2} \sum_{i=0}^{N-1} f(x_i) + f(x_{i+1})$$

$$\frac{h}{2}(f(A) + f(B)) + \frac{h}{2} \sum_{i=1}^{N-1} f(x_i)$$
Aucune de ces réponses n'est correcte.

Question 10  $\clubsuit$  L'approximation  $I_4^T$  de l'intégrale  $I = \int_0^1 e^{-x^2} dx$  en appliquant la méthode du trapèze composite

avec 4 sous-intervalles vaut

Sous-intervalies valut 
$$\frac{1}{8+1/8}e^{-1} + \frac{1}{4}e^{-1/16} + \frac{1}{4}e^{-1/4} + \frac{9}{16}$$
 2.228952 
$$0.742984$$
 Aucune de ces réponses n'est correcte. 
$$\frac{1}{4+1/4}e^{-1} + \frac{1}{2}e^{-1/16} + \frac{9}{16}$$



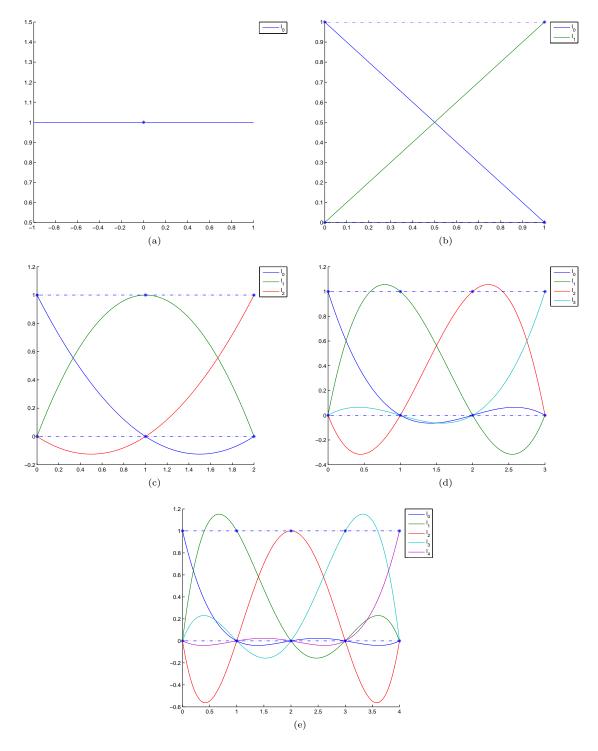
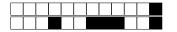


Figure 1 – Quelques tracés de polynômes de Lagrange  $l_i$  (question 4).



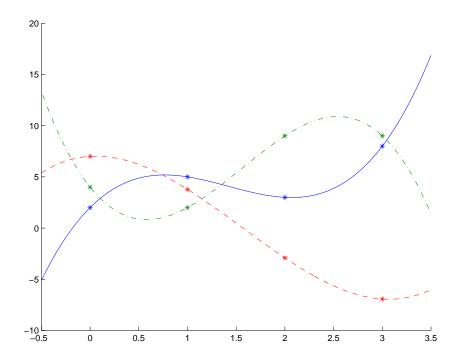


Figure 2 – Plusieurs polynômes interpolateurs  $\Pi_3$  (question 5).