

Mécanique 3A MNB Automne

Examen de TD du 15 octobre 2019

Durée: 1 heure(s)

Documents autorisés : OUI \boxtimes NON \square Un formulaire manuscrit d'une feuille A4 recto-verso

Calculatrice autorisée : OUI \boxtimes NON \square

 $Tout\ type$

Exercice 1.

On connaît les valeurs d'une fonction g aux points $x_0=0, x_1=1$ et $x_2=3$:

$$g(x_0) = 0.115634$$
, $g(x_1) = -0.360934$, $g(x_2) = -0.356781$.

- (1) Construire le polynôme de degré au plus 2 (noté $\Pi_2 g$), interpolant la fonction g aux nœuds x_0 , x_1 et x_2 .
- (2) Pour $\alpha = 0.500000$, donner une valeur approchée de $g(\alpha)$.

Exercice 2.

On pourra consulter les formules d'erreur données en page 2. Soit f donnée par

$$\forall x \in [0, 2], \quad f(x) = \cos(1/10x^2),$$
 (1a)

et l'intégrale ${\cal I}$

$$I = \int_0^2 f(x)dx. \tag{1b}$$

- (1) (a) Déterminer I^S , l'approximation de I par la méthode élémentaire de Simpson.
 - (b) On note

$$M_p = \max_{x \in [0,2]} |f^{(p)}(x)|,$$
 (2)

le maximum de la valeur absolue de la dérivée p-ième de f sur l'intervalle d'étude. On donne ci-dessous les valeurs numériques de M_1 , M_2 , M_3 et M_4 :

$$M_1 = 0.1557673369235;$$
 (3a)

$$M_2 = 0.2252534275022; (3b)$$

$$M_3 = 0.1961318646529;$$
 (3c)

$$M_4 = 0.1200000000000. (3d)$$

Donnez l'expression de l'erreur commise avec la méthode élémentaire de Simpson et fournissezen une majoration.

(c) On donne la valeur exacte de I:

$$I = FresnelC\left(2/5\frac{\sqrt{5}}{\sqrt{\pi}}\right)\sqrt{\pi}\sqrt{5},\tag{4a}$$

soit encore

$$I = 1.9682361637328. \tag{4b}$$

En déduire l'erreur commise réelle, c'est-à-dire $|I^S - I|$ et vérifier qu'elle est inférieure au majorant de l'erreur donné plus haut.

- (2) (a) Déterminer I_2^S , l'approximation de I par la méthode composite de Simpson avec N=2 sous-intervalles.
 - (b) Donnez l'expression de l'erreur commise avec la méthode composite de Simpson puis fournissezen une majoration.
 - (c) Déterminer l'erreur réelle erreur commise, c'est-à-dire $\left|I_2^S I\right|$ et vérifier qu'elle est inférieure au majorant de l'erreur donné plus haut.
- (3) Déterminer le nombre N de sous-intervalles qu'il faudrait utiliser pour avoir une approximation de I par la méthode composite de Simpson avec une erreur inférieure à

$$\varepsilon = 1.10^{-13}.\tag{5}$$

Corrigé

Un corrigé sera disponible sur http://utbmjb.chez-alice.fr/Polytech/index.html

Erreurs des méthodes d'intégration

Méthodes élémentaires sur [a, b]. Dans le tableau qui suit, η appartient à [a, b].

méthode	erreur
rectangle	$\frac{(b-a)^2}{2}f'(\eta)$
milieu	$\frac{(b-a)^3}{24}f''(\eta)$
trapèze	$-\frac{(b-a)^3}{12}f''(\eta)$
Simpson	$-\frac{(b-a)^5}{2880}f^{(4)}(\eta)$

Méthodes composites (composées) sur [A,B] avec un pas h=(B-A)/N. Dans le tableau qui suit, η appartient à [A,B].

méthode	erreur
rectangle	$h^{B-A}_{2}f'(\eta)$
milieu	$h^2 \frac{B-A}{24} f''(\eta)$
trapèze	$-h^2\frac{B-A}{12}f''(\eta)$
Simpson	$-h^4 \frac{B-A}{2880} f^{(4)}(\eta)$