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Correction de l’exercice 1.

(1) Soit K ∈ R. Montrons que l’équation

ex = −x+K. (1)

admet une unique solution sur R, notée r. Pour cela, on définit la fonction f sur R par

∀x ∈ R, f(x) = ex + x−K, (2)

dont les zéros sont exactement les solutions de (1). La fonction f est dérivable sur R et on a

∀x ∈ R, f ′(x) = ex + 1, (3)

qui est strictement positive. La fonction f est donc strictement croissante sur R. De plus, on a

lim
x→−∞

f(x) = −∞, (4a)

lim
x→+∞

f(x) = +∞, (4b)

dont on déduit, d’après la continuité de f et le théorème des valeurs intermédiaires que

f admet un unique zéro sur R, noté r (ou r(K) en cas d’ambiguïté). (5)

Par définition, on a donc

er(K) + r(K)−K = 0. (6)

Remarque 1. Remarquons que la stricte croissance de f sur R implique, puisque r est le zéro de f :

∀x ∈ R, x > r =⇒ f(x) > f(r) = 0,

x < r =⇒ f(x) < 0,

x = r =⇒ f(x) = 0,

et donc, puisque

∀x ∈ R, f(x) = x− g(x), (7)

on obtient naturellement que

g n’a qu’un seul point fixe sur R, qui est r (noté r(K) en cas d’ambiguïté). (8)

et de plus

∀x ∈ R, x > r =⇒ g(x) < x, (9a)

x < r =⇒ g(x) > x, (9b)

x = r =⇒ g(x) = x. (9c)
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Remarque 2. On a aussi

∀K < 1, |g′(r(K)| < 1, (10a)

∀K > 1, |g′(r(K)| > 1, (10b)

g′(r(1)) = −1. (10c)

En effet, on a

∀x ∈ R, g′(x) = −ex, (11)

et donc

∀K ∈ R, g′(r(K)) = −er(K).

Remarquons que d’après la stricte croissance de f , on a

r(K) < 0 ⇐⇒ f(r(K)) < f(0) ⇐⇒ 0 < 1−K

et donc

r(K) < 0 ⇐⇒ K < 1, (12)

ce qui montre (10a) et (10b). Enfin, il est clair que

r(1) = 0, (13)

ce qui montre (10c).

(2) On définit la fonction g par

∀x ∈ R, g(x) = K − ex, (14)

et on met désormais l’équation (1) sous la forme

g(x) = x, (15)

et on considère la méthode du point fixe associée sur un intervalle [a, b] , définie par

x0 ∈ [a, b] et xn+1 = g(xn). (16)

Remarque 3. On peut en fait, directement étudier la convergence ou la divergence de la méthode du point fixe (selon les
valeurs de K) sans utiliser le théorème 4.15 du polycopié de cours, comme le suggérait la suite de l’énoncé (et dont nous
donnerons la solution plus bas, c’est-à-dire à partir du point 2a page 15) . Pour cela, on utilise des techniques proches
de celles utilisées dans les annexes Q du polycopié de cours et X du polycopié de cours.

La preuve se fait en plusieurs points.

(a) Commençons par définir la fonction g2 par

g2(x) = g(g(x) = K − eK−ex . (17)

et considérons f2 définie par (de façon analogue à (7))

f2(x) = x− g2(x) = x−K + eK−ex . (18)

On a donc
(

g2
)′
(x) = ex+K−ex , (19)

et donc

∀x ∈ R,
(

g2
)′
(x) > 0. (20)

On déduit de (20) que

g2 est strictement croissante sur R. (21)

et que

f ′

2(x) = 1−
(

exeK−ex
)

,

et donc

f ′

2(x) = 1− ex+K−ex , (22)

et donc

f ′

2(x) > 0 ssi x+K − ex < 0,
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ce qui est équivalent à

f ′

2(x) > 0 ssi h(x) > 0, où ∀x ∈ R, h(x) = ex − x−K (23)

Étudions la fonction h. On a

∀x ∈ R, h′(x) = ex − 1,

qui est strictement positive sur R ∗

+ et strictement négative sur R ∗

−
.

x

signe de
h′(x)

variations
de
h

−∞ 0 +∞

− 0 +

+∞+∞

1−K1−K

+∞+∞

Tableau 1. Tableau de variation de h.

Voir le tableau de variation de h dans le tableau 1. La valeur minimale de h est donc donnée par

hmin = h(0) = 1−K.

Nous avons alors deux cas :

(i)

x

signe de
h′(x)

variations
de
h

−∞ 0 +∞

− 0 +

+∞+∞

1−K ≥ 01−K ≥ 0

+∞+∞

Tableau 2. Tableau de variation de h dans le cas où K ≤ 1.

Premier cas : on a

K ≤ 1, (24)

ce qui est équivalent à hmin ≥ 0 et donc, d’après le tableau 2, h est strictement positive sur R
∗, et ainsi, d’après

(23),

f2 est strictement croissante sur R. (25)

Enfin, puisque

lim
x→−∞

f2(x) = −∞, (26a)

lim
x→+∞

f2(x) = +∞, (26b)
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on en déduit que f2 admet un zéro unique sur R. Or, d’après (8), on sait que

le point fixe r(K) de g est aussi point fixe de g2, (27)

(puisque g2(r) = g(r) = r) et donc

le point fixe r(K) de g est aussi zéro de f2, (28)

et donc ici

le point fixe r(K) de g est aussi l’unique zéro de f2. (29)

On aboutit à des conclusions analogues à celles de la remarque 1 : la stricte croissance de f2 sur R implique,
puisque r(K) est le zéro de f2 :

∀x ∈ R, x > r(K) =⇒ f2(x) > f2(r) = 0, (30a)

x < r(K) =⇒ f2(x) < 0, (30b)

x = r(K) =⇒ f2(x) = 0, (30c)

et donc, d’après (18), on obtient naturellement que

g2 n’a qu’un seul point fixe sur R, qui est r (noté r(K) en cas d’ambiguïté). (31)

et de plus

∀x ∈ R, x > r(K) =⇒ g2(x) < x, (32a)

x < r(K) =⇒ g2(x) > x, (32b)

g2(r(K)) = r(K). (32c)

Remarque 4. On a aussi

∀K < 1,
∣

∣

∣

(

g2
)′
(r(K))

∣

∣

∣
< 1, (33)

et
(

g2
)′
(r(1)) = 1. (34)

On a effet d’après (19),
(

g2
)′
(r(K)) = er(K)+K−er(K)

et la définition (6), de r(K) implique

∀K ∈ R,
(

g2
)′
(r(K)) = e2r(K). (35)

Enfin, (12) et (35) impliquent (33) et (34) vient de (13).

(ii)

x

signe de
h′(x)

variations
de
h

−∞ 0 +∞

− 0 +

+∞+∞

1−K < 01−K < 0

+∞+∞

δ

0

η

0

Tableau 3. Tableau de variation de h dans le cas où K > 1.

Second cas : on a

K > 1. (36)

Dans ce sous-cas, hmin = 1 − K > 0 et la fonction h s’annule en deux réels δ et η, vérifiant δ < 0 < η. Voir le
tableau de variation 3 dont on déduit que h est strictement positif sur ] − ∞, δ[∪]η,+∞[ et strictement négatif
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x

signe de
f ′

2(x)

variations
de
f2

−∞ δ η +∞

+ 0 − 0 +

−∞−∞

f2(δ)f2(δ)

f2(η)f2(η)

+∞+∞

0

f2(0) > 0

lnK

f2(ln(K)) < 0

Tableau 4. Tableau de variation de f2 dans le cas où K > 1.

sur ]δ, η[, dont on déduit d’après (23) que f2 est strictement croissante sur ] − ∞, δ] ∪ [η,+∞[ et strictement
décroissante sur [δ, η]. On rappelle aussi que l’on a (26).

On en déduit le tableau de variation 4.

Par ailleurs, remarquons que

f2(0) = eK−1 −K, (37a)

f2(lnK) = 1 + lnK −K. (37b)

(37c)

La fonction logarithme étant concave sur R ∗

+, elle est en dessous de sa tangente en tout point et en particulier au
point 1, on a donc

∀h > −1, ln(1 + h) < h,

résultat qui peut aussi être obtenu par une étude de fonction ou par une formule de Taylor-Lagrange à l’ordre 2.
Si on pose 1 + h = u où u > 0, on en déduit

∀u > 0, ln(u) < u− 1,

et en particulier, en K > 0, on a donc

∀K > 0, 1 + ln(K)−K < 0, (38)

ce qui nous prouve, grâce à (37b) :

∀K > 0, f2(lnK) < 0. (39)

De la même façon, la fonction exponentielle étant convexe sur R, elle est au-dessus de sa tangente en tout point
et en particulier au point 0, on a donc

∀h 6= 0, eh > h+ 1,

résultat qui peut aussi être obtenu par une étude de fonction ou par une formule de Taylor-Lagrange à l’ordre 2.
Si on pose 1 + h = u où u ∈ R \ {1}, on en déduit

∀u 6= 1, eu−1 > h,

et en particulier, en K 6= 0, on a donc

∀K 6= 0, eK−1 > K (40)

ce qui nous prouve, grâce à (37a) :

∀K 6= 0, f2(0) > 0. (41)

De cela et du tableau de variation 4, on déduit que (car δ < 0 < η),

f2 ne s’anulle qu’une fois sur R
∗

−
. (42)

Enfin, remarquons que η > lnK, car c’est équivalent (car lnK > 0) à h(η) > h(lnK) soit à 0 > − lnK, ce qui est
vrai car K > 1. D’après (39), on peut donc compléter le tableau de variation 4, dont on déduit que

f2 ne s’anulle qu’une fois sur ]0, lnK[ et une fois sur ] lnK,+∞[. (43)
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Autrement dit, d’après (42) et (43), que f2 possède trois zéros, deux à deux distincts, le premier dans l’intervalle
]−∞, 0[, le deuxième dans l’intervalle ]0, lnK[, et le troisième dans l’intervalle ] ln(K),+∞[. Notons que l’unique
zéro r(k) de f est aussi dans l’intervalle ]0, lnK[. En effet, cela est équivalent à

f(0)f(lnK) < 0,

ce qui est équivalent, compte tenu de la définition de f à

(1 −K)(K + lnK −K) < 0,

soit encore à

(1 −K) lnK < 0,

ce qui est vrai d’après (36). D’après (28), et par unicité du zéro de f dans ]0, lnK[, on en déduit que le deuxième
zéro de f2 (dans l’intervalle ]0, lnK[) ne peut être que r(K) et d’après ce qui précède :

f2 possède trois zéros, deux à deux distincts, le premier, noté α(K), dans l’intervalle ]−∞, 0[,

le second, égal à r(K) dans l’intervalle ]0, lnK[, et le troisième, noté β(K), dans l’intervalle ] ln(K),+∞[. (44)

On en déduit le tableau 5. En revenant à la la fonction g2, on en déduit que

g2 possède trois points fixes, deux à deux distincts, le premier, noté α(K), dans l’intervalle ]−∞, 0[,

le second, égal à r(K) dans l’intervalle ]0, lnK[, et le troisième, noté β(K), dans l’intervalle ] ln(K),+∞[. (45)

x

signe de
f ′

2(x)

variations
de
f2

−∞ δ η +∞

+ 0 − 0 +

−∞−∞

f2(δ)f2(δ)

f2(η)f2(η)

+∞+∞

α(K)

0

r(K)

0

β(K)

0

Tableau 5. Tableau de variation de f2 dans le cas où K > 1.

On aboutit à des conclusions analogues à celles des équations (30) et (32) : le tableau de variation 5 implique

∀x ∈ R, x < α(K) =⇒ f2(x) < 0, (46a)

α(K) < x < r(K) =⇒ f2(x) > 0, (46b)

r(K) < x < β(K) =⇒ f2(x) < 0, (46c)

x > r(K) =⇒ f2(x) > 0, (46d)

x ∈ {α(K), r(K), β(K)} =⇒ f2(x) = 0, (46e)

et

∀x ∈ R, x < α(K) =⇒ g2(x) > x, (47a)

α(K) < x < r(K) =⇒ g2(x) < x, (47b)

r(K) < x < β(K) =⇒ g2(x) > x, (47c)

x > r(K) =⇒ g2(x) < x, (47d)

x ∈ {α(K), r(K), β(K)} =⇒ g2(x) = x, (47e)
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Remarque 5. Notons que l’on a dans ce cas :
∣

∣

∣

(

g2
)′
(α(K))

∣

∣

∣
< 1, (48a)

∣

∣

∣

(

g2
)′
(β(K))

∣

∣

∣
< 1, (48b)

∣

∣

∣

(

g2
)′
(r(K))

∣

∣

∣
> 1. (48c)

— La preuve de (48c) se fait comme celle de (10b) en utilisant (12) et (35).
— Montrons (48b). Pour cela, nous allons utiliser la convexité de g2. D’après (19), on a

(

g2
)′′

(x) = (1 − ex)ex+K−ex ,

et donc

∀x > 0,
(

g2
)′′

(x) < 0, (49a)

∀x < 0,
(

g2
)′′

(x) > 0. (49b)

Or, on a 0 < r(K) < β(K) donc g
(

g2
)

′′ est strictement négative sur l’intervalle [r(K), β(K)] et donc g2 est
strictement concave, c’est-à-dire, −g2 strictement convexe sur l’intervalle [r(K), β(K)]. On renvoie à [RDO88,
section 4.5.1] Cette convexité implique que la dérivée de −g2 en β(K) est strictement supérieure à la pente
de −g2 entre les points r(K et β(K) :

(

−g2
)′
(β(K) >

−g2(β(K)) + g2(r(K))

β(K)− r(K)
,

ce qui implique
(

−g2
)′
(β(K) >

−β(K) + r(K)

β(K)− r(K)
= −1,

et donc
(

g2
)′
(β(K) < 1.

Ainsi, compte tenu de (20), on a

0 <
(

g2
)′
(β(K) < 1,

ce qui montre (48b).

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

 

y=g2(x)
y=x
corde
r(K)
beta(K)

Figure 1. La fonction g2 sur l’intervalle [r(K), β(K)] pour K = 5/2.

Illustrons cela en traçant les divers éléments calculés sur la figure 1.
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— Montrons (48a). Cette fois, nous n’utiliserons pas la convexité de g2 sur la totalité de l’intervalle [α(K), r(K)].
Mais, on a α(K) < 0 donc d’après (49b), g2 est strictement convexe sur l’intervalle [α(K), α(K)/2] et comme
précédemment, on en déduit

0 <
(

g2
)′
(α(K)) <

g2(α(K)/2) − g2(α(K))

α(K)/2 − α(K)
. (50)

Or, on a α(K)/2 ∈]α(K), r(K)[ et d’après (47b), on a g2(α(K)/2) < α(K)/2 et d’après (50), on a

0 <
(

g2
)′
(α(K)) <

α(K)/2− g2(α(K))

α(K)/2 − α(K)
=

α(K)/2 − α(K)

α(K)/2 − α(K)
= 1,

ce qui nous permet de conclure.

−11 −10 −9 −8 −7 −6 −5 −4 −3
−11

−10

−9

−8

−7

−6

−5

−4

−3

 

 

y=g2(x)
y=x
corde
alpha(K)
alpha(K)/2

Figure 2. La fonction g2 sur l’intervalle [α, α/2] pour K = 5/2.

Illustrons cela en traçant les divers éléments calculés sur la figure 2.
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Figure 3. Les courbes
(

g2
)′
(α(K)) et

(

g2
)′
(β(K)) en fonction de K pour K ∈]1, 15].
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y=g2(x)
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(a) K = 1.
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α(5/2)
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(b) K = 5/2.

−15 −10 −5 0 5
−15

−10

−5

0

5

 

 

y=g2(x)
y=x
r(−1)

(c) K = −1.

Figure 4. Les graphiques de la fonction g2 sur l’intervalle [−15, 5] pour différentes valeurs de K.

Sur la figure (3), on constate que
(

g2
)

′
(α(K)) et

(

g2
)

′
(β(K)) semblent appartenir à ]0, 1[, pour tout K, ce qui

est confirmé numériquement par

min
K∈]1,15]

(

g2
)′
(α(K)) = 0,

max
K∈]1,15]

(

g2
)′
(α(K)) = 0, 997 202 351 770,

min
K∈]1,15]

(

g2
)′
(β(K)) = 0,

max
K∈]1,15]

(

g2
)′
(β(K)) = 0, 997 202 351 770.

De plus, il semblerait sur cette figure que

∀K,
(

g2
)′
(α(K)) =

(

g2
)′
(β(K)),

ce qui est confirmé numériquement par

max
[K∈]1,15]

∣

∣

∣

(

g2
)′
(α(K)) −

(

g2
)′
(β(K))

∣

∣

∣
= 2, 553 51× 10−15.
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Illustrons les trois types de points fixes de g2 selon les valeurs de K donnés par K = 1, K = 5/2 et K = −1, par
la figure 4.

(b) Concluons maintenant sur la convergence de la suite (vn) du point fixe associée à g2, c’est-à-dire définie par

vn+1 = g2(vn) et v0 ∈ R. (51)

Considèrons les intervalles de R définis par

• Si K ≤ 1,

I1 =]−∞, r(K)[, (52a)

I2 =]r(K),+∞[, (52b)

• Si K > 1,

I3 =]−∞, α(K)[, (53a)

I4 =]α(K), r(K)[, (53b)

I5 =]r(K), β(K)[, (53c)

I6 =]β(K),+∞[, (53d)

Remarquons d’abord que, d’après la croissance stricte de g2,

chacun des intervalles Jk est g2-stable. (54)

En effet, par exemple, x ∈ I3, on a x < α(K) et donc g2(x) < g2(α(K)) = α(K). Si par exemple, x ∈ I4, on a
α(K) < x < r(K) et donc g2(α(K)) < g2(x) < g2(r(K)), ce qui implique α(K) < g2(x) < r(K).

Remarquons aussi que si v0 est égal à r(K) si K ≤ 1 ou si v0 appartient à {α(K), r(K), β(K)} si K > 1, alors la suite
vn est constante et égale à v0.

Supposons maintenant que v0 appartient à l’un des intervalles Ik. Alors, pour tout n, vn appartient à Ik, ce qui se
montre par récurrence sur n en utilisant (54).

Enfin, v0 appartient à l’un des intervalles Ik, alors la suite vn est strictement monotone, à terme dans Ik. En effet, si par
exemple v0 appartient à I4, alors, pour tout n est dans I4 et d’après (47b) appliqué à x = vn, on a vn+1 = g2(vn) < vn.
La suite vn étant monotone et bornée (dans R = R ∪ {+∞}∪ {−∞}), elle converge vers l ∈ R. De plus, d’après (32)
et (47), si v0 appartient à Ik, pour k ∈ {1, 3, 5}, la suite vn est strictement croissante et majorée dans R et, pour
k ∈ {2, 4, 6}, la suite vn est strictement croissante et minorée dans R. Dans tous les cas, la suite vn converge donc vers
l, qui est point fixe de g2, puisque g2 est continue (on passe à la limite n → ∞ dans (51))

Or, les seuls points fixes de g2 sont nécessairement α(K) ou r(K) ou β(K). La limite de vn est donc nécessairement
l’un de ces trois réels. Dans le cas où K ≤ 1, le seul point fixe de g2 est r(K), qui est donc la valeur de l.

Si K > 1, montrons que l vaut α(K) ou β(K).

— Si v0 appartient à I3, vn est croissante et est à valeur dans I3. La valeur de l est donc le seul point fixe de g2 qui
est dans l’adhérence de I3, c’est-à-dire ]−∞, α(K)], qui ne peut être que α(K).

— Il en est de même si v0 appartient à I6 avec l = β(K).
— Si v0 appartient à I4, vn est décroissante et est à valeur dans I4. La valeur de l est donc le seul point fixe de g2

qui est dans l’adhérence de I4, c’est-à-dire [α(K), r(K)]. Puisque vn est strictement décroissante, ce ne peut pas
être r(K) et on a donc l = α(K).

— Il en est de même si v0 appartient à I5 avec l = α(K).

Bref, on a montré que

Si K ≤ 1, alors pour tout v0 ∈ R, la suite vn converge vers r(K). (55a)

Si K > 1 et si v0 = r(K), alors la suite vn est constante et vaut r(K). (55b)

Si K > 1 et si v0 < r(K), alors la suite vn converge vers α(K). (55c)

Si K > 1 et si v0 > r(K), alors la suite vn converge vers β(K). (55d)

Remarque 6. On a étudié dans les remarques 2, 4 et 5, les aspects attractifs de r(K) et répulsifs de α(K) et β(K)

(voir remarque 4.13 page 84 du cours). Il est intéressant de constater que la méthode du point fixe ne converge que
vers des points attractifs et non vers des point répulsifs. Attention, les aspects attractif ou répulsif ne suffisent pas à
montrer la convergence ou la divergence de la méthode ; ces propriétés découlent ici de l’étude globale de la suite (voir
propositions 4.14 du polycopié de cours et 4.15 du polycopié de cours).

Remarque 7. Ce résultat pouvait être démontré en utilisant la proposition P.1 du polycopié de cours.
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Figure 5. Les 12 premières valeurs de vn pour K = 5/2 et x0 = 5/8.
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Figure 6. Les 11 premières valeurs de vn pour K = 5/2 et x0 = g (5/8).

(c) Concluons par quelques simulations confirmant cela.

Quelsques simulations ont été faites : Voir les figures 5, 6 et 7, et les tableaux 6 7 et 8.
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Figure 7. Les 13 premières valeurs de vn pour K = −1 et x0 = −5/4.

n vn

0 0, 625 000 000 000 00

1 0, 619 093 121 774 70

2 0, 598 283 279 505 39

3 0, 524 134 392 085 49

4 0, 249 834 446 031 84

5 −0, 874 297 455 153 25

6 −5, 527 274 158 912 70

7 −9, 634 142 647 988 75

8 −9, 681 696 577 650 00

9 −9, 681 733 607 723 56

10 −9, 681 733 635 878 09

11 −9, 681 733 635 899 49

12 −9, 681 733 635 899 51

Tableau 6. Les 12 premières valeurs de vn pour K = 5/2 et x0 = 5/8.

On peut évaluer r(−1) et α(5/2) et β(5/2) : on obtient

r(−1) = −1, 278 464 542 761 074, (56a)

α(5/2) = −9, 681 733 635 899 509, (56b)

β(5/2) = 2, 499 937 586 791 849 (56c)
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n vn

0 0, 631 754 042 567 78

1 0, 642 757 015 330 88

2 0, 681 006 584 823 73

3 0, 811 003 793 050 89

4 1, 216 187 141 219 82

5 2, 082 845 013 158 52

6 2, 496 023 185 507 44

7 2, 499 934 544 671 00

8 2, 499 937 584 478 88

9 2, 499 937 586 790 09

10 2, 499 937 586 791 85

11 2, 499 937 586 791 85

Tableau 7. Les 11 premières valeurs de vn pour K = 5/2 et x0 = g(5/8).

n vn

0 −1, 250 000 000 000 00

1 −1, 276 234 593 770 97

2 −1, 278 291 487 793 66

3 −1, 278 451 122 808 18

4 −1, 278 463 502 139 32

5 −1, 278 464 462 068 63

6 −1, 278 464 536 503 98

7 −1, 278 464 542 275 88

8 −1, 278 464 542 723 45

9 −1, 278 464 542 758 16

10 −1, 278 464 542 760 85

11 −1, 278 464 542 761 06

12 −1, 278 464 542 761 07

13 −1, 278 464 542 761 07

Tableau 8. Les 13 premières valeurs de vn pour K = −1 et x0 = −5/4.

et on obtient pour chacune des trois simulations :

|v13 − r(−1)| = 0, (57a)

|v12 − α(5/2)| = 0, (57b)

|v11 − β(5/2)| = 0, (57c)

ce qui confirme (55).

(d) Étudions maintenant la convergence de la suite xn définie par (16).

(i) Dans le cas où x0 = r(K), d’après (9c), on a pour tout n, xn = r(K).

(ii) Si x0 < r(K), d’après (9b) appliqué à x0, on a x1 = g(x0) > r(K) ; puis, d’après (9a) appliqué à x1, on a
x2 = g(x1) < r(K). On montre aisément par récurrence sur n que

x0 < r(K) =⇒ ∀n, x2n < r(K) et x2n+1 > r(K). (58)

De même, on montre aisément par récurrence sur n que

x0 > r(K) =⇒ ∀n, x2n > r(K) et x2n+1 < r(K). (59)
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On considère ensuite les deux suites wn et zn des termes de rangs pairs et impairs définies par

∀n ∈ N, wn = x2n, zn = x2n+1. (60)

On alors

wn+1 = x2n+2 = g(x2n+1) = g(g(x2n)) = g2(wn),

zn+1 = x2n+3 = g(x2n+2) = g(g(x2n+1)) = g2(zn),

et autrement dit,

les deux suites wn et zn sont les deux suites du point fixe associées à la fonction g2

par xn+1 = g2(xn) de premiers termes respectifs x0 et x1. (61)

Ainsi, d’après (58) et (59), on a

x0 < r(K) =⇒ ∀n, wn < r(K) et zn > r(K), (62a)

x0 > r(K) =⇒ ∀n, wn > r(K) et zn < r(K) (62b)

Enfin, on n’a plus qu’à utiliser (55) :

Si K ≤ 1, les deux suites wn et zn convergent toutes les deux vers r(K), (63a)

et donc la suite xn converge vers r(K).

Si K > 1, les deux suites wn et zn convergent respectivement vers α(K) et β(K) si x0 < r(K), (63b)

Si K > 1, les deux suites wn et zn convergent respectivement vers β(K) et α(K) si x0 > r(K), (63c)

et donc, K > 1, puisque α(K) 6= β(K), la suite xn ne converge donc pas.

Bref, pour récapituler, on a montré que, pour tout K dans R.

Si x0 = r(K), la suite xn est constante égale à r(K). (64a)

Si x0 6= r(K) et K ≤ 1, la suite xn converge vers r(K). (64b)

Si x0 6= r(K) et K > 1, la suite xn est divergente. (64c)

Remarque 8. Voir de nouveau la remarque 6.

Remarque 9. Ce résultat pouvait être démontré en utilisant la proposition P.2 du polycopié de cours.

(e) Les simulations numériques et le corrigé des questions 2a et 2b, illustreront les résultats (64) établis.

♦

(a) On pose, dans cette question ;

a = −2, (65a)

b = −1/2, (65b)

K = −1. (65c)

(i) Montrons, qu’avec ces valeurs, la méthode du point fixe converge pour tout x0 ∈ [a, b]. Il suffit

d’utiliser directement la proposition 4.22 du polycopié de cours.

La fonction g étant décroissante, l’intervalle [a, b] est g-stable si l’on a

a ≤ g(b) et g(a) ≤ b, (66)

ce qu’on vérifie numériquement.

La fonction g′ donnée par (11) étant décroissante et négative, on a donc

max
x∈[a,b]

|g′(x)| = emax{a,b}, (67)

qui est strictement plus petit que 1 si a et b sont strictement négatifs, ce qui est le cas ici. On a

donc

k = max
x∈[a,b]

|g′(x)| , (68)
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où

k = e−1/2 avec k < 1. (69)

Les deux hypothèses de la proposition 4.22 du polycopié de cours sont vérifiées ce qui permet de

conclure.

(ii) La valeur de n telle que

|xn − r| ≤ ε (70)

avec

ε = 10−2, (71)

est donnnée par la proposition 4.24 du polycopié de cours. Avec k donné par (69), on obtient

numériquement

n = 11. (72)

(iii)

−1.29 −1.285 −1.28 −1.275 −1.27 −1.265 −1.26 −1.255 −1.25
−1.3

−1.29

−1.28

−1.27

−1.26

−1.25

−1.24

 

 

fonction
itérés du point fixe
dernière valeur

Figure 8. Les 12 premières valeurs de xn pour K = −1 et x0 = −5/4.

On a affiché sur la figure 8, les 12 premières valeurs de xn pour K = −1 et x0 = −5/4. On a

indiqué dans le tableau 9 page suivante, les valeurs correspondantes (en allant plus loin, jusqu’à

n = 29), en séparant les termes d’indices impairs et pairs.

Cela est conforme au résultat (64b), puisqu’ici, K ≤ 1 et r(−1) est donné par (56a). Cela est

aussi conforme aux résultat (63a) : les deux suites de rangs pairs et impairs convergent toutes

les deux vers r(−1), en étant l’une inférieure, l’autre supérieure à r(−1) et étant toutes les deux

monotones.

Remarque 10. Notons qu’il est possible de déterminer de façon explicite, gràce à la fonction W

de Lambert la valeur de r(K), pour tout K réel. Voir la section F.2 du polycopié de cours. On a
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n x2n x2n+1

0 −1, 250 000 000 000 00 −1, 286 504 796 860 19

1 −1, 276 234 593 770 97 −1, 279 086 197 358 40

2 −1, 278 291 487 793 66 −1, 278 512 736 603 42

3 −1, 278 451 122 808 18 −1, 278 468 279 767 19

4 −1, 278 463 502 139 32 −1, 278 464 832 537 49

5 −1, 278 464 462 068 63 −1, 278 464 565 231 06

6 −1, 278 464 536 503 98 −1, 278 464 544 503 45

7 −1, 278 464 542 275 88 −1, 278 464 542 896 18

8 −1, 278 464 542 723 45 −1, 278 464 542 771 55

9 −1, 278 464 542 758 16 −1, 278 464 542 761 89

10 −1, 278 464 542 760 85 −1, 278 464 542 761 14

11 −1, 278 464 542 761 06 −1, 278 464 542 761 08

12 −1, 278 464 542 761 07 −1, 278 464 542 761 07

13 −1, 278 464 542 761 07 −1, 278 464 542 761 07

14 −1, 278 464 542 761 07 −1, 278 464 542 761 07

Tableau 9. Les 30 premières valeurs de xn pour x0 = −5/4 et K = −1.

ici

a = 1, (73a)

b = 1, (73b)

c = −K (73c)

et donc

∆ = eK ∈ R
∗
+, (74)

et on a donc d’après (F.11) du polycopié de cours, la solution unique r(K) ,donnée par

r(K) = K −W0(e
K). (75)

Cela est confirmé par matlab :

s o l v e ( ’ e^x=−x+K’ , ’ x ’ )

qui donne

−LambertW
(

ln (e) eln(e)K
)

+ ln (e)K

ln (e)

la fonction lambertw est programmée sous matlab et on peut donc utiliser directement (75).

Numériquement, on a

r(−1) = −1, 278 464 542 761 073 9, (76)

ce qui confirme la valeur finale du tableau 9. De plus, pour n donné par (72), on a

|xn − r(−1)| = 2, 246 99× 10−8,

ce qui confirme a posteriori le choix de n défini par la majoration (70).
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(b) On pose, dans cette question ;

a = 1/4, (77a)

b = 1, (77b)

K = 5/2. (77c)

(i) Comme dans la question 2a, la fonction g′ donnée par (11) est décroissante et négative et on a

donc

min
x∈[a,b]

|g′(x)| = emin{a,b}, (78)

qui est strictement plus grand que 1 si l’un des réels a et b est strictement positif, ce qui est le

cas ici. On a donc

k = min
x∈[a,b]

|g′(x)| , (79)

où

k = e1/4 avec k > 1. (80)

Par ailleurs, on a

signe(f(a)f(b)) = −1, (81)

et donc l’intervalle [a, b] contient l’unique racine r(K) de f . Donc, de (79) et (80), on peut

déduire que

|g′(r(K))| > 1 (82)

et le point r(K) est dit répulsif. Voir la remarque 4.13 du polycopié de cours. Attention, l’égalité

(82) ne permet pas a priori d’affirmer que la méthode du point fixe est divergente.

Pour cela, on peut utiliser par exemple la proposition 4.15 du polycopié de cours. Ses trois

hypothèses sont vérifiées. En effet, on pose I = [a, b] et on successivement :

— g est définie sur R donc sur I.

— La propriété (4.28b) du polycopié de cours est vérifiée. En effet, On utilise la remarque 4.16

du polycopié de cours.La fonction g étant décroissante, l’intervalle R\ [a, b] est g-stable si l’on

a

g(b) ≤ a et g(a) ≥ b, (83)

ce qu’on vérifie numériquement.

— Enfin, la propriété (4.28c) du polycopié de cours est vérifiée d’après (79) et (80).

On peut donc conclure que la suite xn diverge pour tout x0 ∈ [a, b] \ {r(K)}.
La preuve de ce résultat a été établie dans le cas général pour tout K > 1 et pour tout x0 6= r(K). Voir (64c).

♦

Remarque 11.

On a affiché sur la figure 9 page ci-contre, les 30 premières valeurs calculées avec les paramètres

donnés par (77) et x0 donné par

x0 = 5/8. (84)

On a indiqué dans le tableau 10 page suivante, les valeurs correspondantes, en séparant les termes

d’indices impairs et pairs.

(A)

On constate sur la figure 9 page ci-contre et surtout sur le tableau 10 page suivante, que

la suite xn semble ne pas converger. Plus précisément, il semble apparaître que la suite des

termes de rangs pairs convergerait en décroissant vers la valeur

lp = −9, 681 733 635 899 508 5, (85)
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Figure 9. Les 30 premières valeurs de xn pour x0 = 5/8 et K = 5/2.

n x2n x2n+1

0 0, 625 000 000 000 00 0, 631 754 042 567 78

1 0, 619 093 121 774 70 0, 642 757 015 330 88

2 0, 598 283 279 505 39 0, 681 006 584 823 73

3 0, 524 134 392 085 49 0, 811 003 793 050 89

4 0, 249 834 446 031 84 1, 216 187 141 219 82

5 −0, 874 297 455 153 25 2, 082 845 013 158 52

6 −5, 527 274 158 912 70 2, 496 023 185 507 44

7 −9, 634 142 647 988 75 2, 499 934 544 671 00

8 −9, 681 696 577 650 00 2, 499 937 584 478 88

9 −9, 681 733 607 723 56 2, 499 937 586 790 09

10 −9, 681 733 635 878 09 2, 499 937 586 791 85

11 −9, 681 733 635 899 49 2, 499 937 586 791 85

12 −9, 681 733 635 899 51 2, 499 937 586 791 85

13 −9, 681 733 635 899 51 2, 499 937 586 791 85

14 −9, 681 733 635 899 51 2, 499 937 586 791 85

Tableau 10. Les 30 premières valeurs de xn pour x0 = 5/8 et K = 5/2.

et que la suite des termes de rangs impairs convergerait en croissant vers la valeur

li = 2, 499 937 586 791 849 0, (86)

Polytech Automne 2025 MNBmater : Corrigé du contrôle continu 2 du 20 janvier 2026 Jérôme Bastien



20

−15 −10 −5 0 5
−15

−10

−5

0

5

 

 

y=g2(x)
y=x

(a) g2
−15 −10 −5 0 5
0

1

2

3

4

5

6

(b) (g2)′

Figure 10. Les graphiques des fonction g2 et (g2)′ sur l’intervalle [−15, 5].
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Figure 11. Les graphiques des fonction g2 et (g2)′ sur l’intervalle [−10, 681 73,−8, 681 73].

(B)

Tâchons d’expliquer de façon qualitative les observations faites dans la question 2(b)iA grâce

aux figures 10, 11 et 12. En fait, la suite x2n des termes de rangs pairs vérifie la relation de

récurrence

x2n+2 = g(x2n+1) = g(g(x2n)) = g2(x2n),

où g2 est donnée par (17). De même, la suite x2n+1 des termes de rangs impairs vérifie la

relation de récurrence

x2n+3 = g(x2n+2) = g(g(x2n+1)) = g2(x2n+1).

Le comportement de la fonction g2 permet donc de prédire la convergence des suites x2n et

x2n+1. On constate sur la figure 10, que la fonction g2 semble avoir trois points fixes dont
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Figure 12. Les graphiques des fonction g2 et (g2)′ sur l’intervalle [1, 499 94, 3, 499 94].

les valeurs numériques sont proches des trois valeurs données par (56). Il semblerait que le

plus grand et le plus petit point fixe soient des points attractifs pour la fonction g2 comme le

montrent les figures 11 et 12, et que le point fixe intermédiaire soit répulsif comme le montre

la figure (10(b)). On peut confirmer cela puisque que l’on peut vérifier numériquement qu’en

ces trois points fixes, on a

g′(r(5/2)) = 2, 567 854 985 668 169, (87a)

g′(α(5/2)) = 0, 000 760 301 077 059, (87b)

g′(β(5/2)) = 0, 000 760 301 077 059. (87c)

On pourrait aussi montrer que les hypothèses de la proposition 4.22 du polycopié de cours

sont valables pour la fonction g2 sur des intervalles autour des valeurs du premier et du dernier

point fixe de g2 données par (56b) et (56c). Ainsi, il y aurait bien convergence des suites

x2n et x2n+1 vers ces valeurs.

De façon plus rigoureuse, il suffit d’utiliser les résultats (63b) et (64c), qui prévoient la

divergence de la suite xn et la convergence de x2n et x2n+1 vers α(K) et β(K) (distincts),

puisque x0 < r(K). Enfin, on confirme cela de façon numérique puisque pour n = 15, on a

|x2n − lp| = 0,

|x2n+1 − li| = 0.

(ii) Pour résoudre (1) dont on sait que la solution r(5/2) existe et est unique, on ne peut donc utiliser

la méthode du point fixe qui diverge. En revanche, on peut utiliser la méthode de la dichotomie

sur l’intervalle [a, b], qui converge ici vers r(5/2) d’après (81). On choisit n pour que la méthode

de dichotomie fournisse r(5/2) avec une erreur inférieure à ε donné par

ε = 10−16,

en utilisant la proposition 4.5 du polycopié de cours. On obtient pour le n-ième milieu

xn = 0, 627 352 959 583 406,

Polytech Automne 2025 MNBmater : Corrigé du contrôle continu 2 du 20 janvier 2026 Jérôme Bastien



22

et, en utilisant (75), qui fournit,

r(5/2) = 0, 627 352 959 583 406,

on a

|xn − r(5/2)| = 0.

Correction de l’exercice 2.

(1)

f(x) = x2 − a

(2)

xk+1 = xk − f(xk)

f ′(xk)
=

x2
k + a

2xk
=

1

2

(

xk +
a

xk

)

(3)

n xn |xn −√
a|

0 5.0000000000 1.8377223398

1 3.5000000000 0.3377223398

2 3.1785714286 0.0162937684

3 3.1623194222 0.0000417620

Tableau 11. Itérés xn de Newton

Les résultats sont donnés dans le tableau 11.

(4) La méthode de Newton se ramène à une méthode de point fixe en posant :

g(x) = x− f(x)

f ′(x)
= x− x2 − a

2x

donc

g′(x) = 2(x2 − a)

g′(r) = g′(
√
a) = 0

g′′(x) = 4x

g′′(r) = 4
√
a 6= 0

L’erreur de la méthode de point fixe s’écrit :

en+1 ≃ g′(r)en +
g′′(r)

2
e2n +

g′′′(r)

3!
e3n + . . .

Donc ici :

en+1 ≃ g′′(r)

2
e2n ≃ 2

√
ae2n

Méthode d’ordre 2.
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Figure 13. Les divers itérés par la méthode de Newton.

(5) Parmi les méthode vues en cours, la seule qui est d’ordre 2 est la méthode de Newton. Les autres ont

des ordres de convergence inférieurs à 2.

Par ailleurs la valeur initiale peut être choisie arbitrairement car la méthode convergera quel que soit

x0 > 0 (voir figure 13), cela est du au fait que la courbe représentative de f(x) est une parabole qui

coupe l’axe des x > 0 en une seule valeur positive et f ′(x) > 0 quel que soit x > 0. On peut donc par

exemple choisir x0 = a. Une méthode de point fixe par exemple ne convergera pas forcément quel que

soit x0 > 0, il faut choisir correctement la fonction d’itération.

Il est donc préférable de choisir la méthode de Newton.

Correction de l’exercice 3.

(1) Système équivalent :














y′1(t) = y2(t)

y′2(t) = −2y1(t)y2(t)

y1(0) = 0

y2(0) = 4

Les résultats sont donnés dans le tableau 12 page suivante. On constate qu’à partir de n = 3, la

solution ne bouge plus. Donc la valeur asymptotique est 2.50.

Remarque 12. La solution de l’équation différentielle

y′′(t) = −2y(t)y′(t), (88a)

y(0) = y0, (88b)

y′(0) = y′0, (88c)
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n tn yn1 yn2

0 0.00 0.00 4.00

1 0.25 1.00 4.00

2 0.50 2.00 2.00

3 0.75 2.50 0.00

4 1.00 2.50 0.00

5 1.25 2.50 0.00

6 1.50 2.50 0.00

7 1.75 2.50 0.00

8 2.00 2.50 0.00

9 2.25 2.50 0.00

10 2.50 2.50 0.00

11 2.75 2.50 0.00

12 3.00 2.50 0.00

Tableau 12. Valeurs approchées par Euler progressif

peut s’obtenir sous matlab symbolique. On obtient

y(t) = tanh(t(y′0 + y20)
1
2 + atanh(y0/(y

′
0 + y20)

1
2 ))(y′0 + y20)

1
2 (89)

Dans le cas particulier de

y0 = 0, (90a)

y′0 = 4, (90b)

on a alors

y(t) = 2tanh(2t) (91)

On obtient en particulier

lim
t→+∞

= 2, (92)

ce qui confirme le graphe de l’énoncé (voir figure 14 page 26).

Pour obtenir cela à la main, on peut remarquer que 2yy′ = (y2)′ et donc que (88) est équivalente à :

y′(t) = −y2 + C, (93a)

y(0) = y0, (93b)

où

C = y′0 + y20 (94)

On en déduit d’une part que si y a une limite à l’infini avec une dérivée nulle, alors (93a) implique

y2(+∞) = C, ce qui confirme (92). Cela implique aussi que C ≥ 0, ce qui est vrai numériquement. On

résoud alors (93a) par séparation des variables :

dy

−y2 + C
= dt,

En posant y =
√
Cz, on a alors

dz

−z2 + 1
=

√
Cdt,
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ce que l’on résoud sur un intervalle où z est différent ±1 en écrivant
∫

dz

−z2 + 1
=

√
Ct+K. (95)

La primitive de gauche est alors évaluée en décomposant la fraction rationnelle en éléments simples :

1

−z2 + 1
=

1

2

(

− 1

z − 1
+

1

z + 1

)

,

et donc en intégrant sur un intervalle où z est différent de ±1, on a

1

2
ln

∣

∣

∣

∣

z + 1

z − 1

∣

∣

∣

∣

=
√
Ct+ k

En supposant |z| < 1, il vient donc
√

1 + z

1− z
= e

√
Ct+K ,

ce qui donne en t = 0

K =
1

2
ln

1 + y0/
√
C

1− y0/
√
C
, (96)

ainsi que, en retournant à y et en prenant la fonction réciproque,

y =
√
C
e2

√
Ct+2K − 1

e2
√
Ct+2K + 1

, (97)

identique à ce qui est donné par (89). Dans le cas particulier (90), on a

C = 4, K = 0,

et donc

y = 2
e4t − 1

e4t + 1
,

soit encore

y = 2
e2t − e−2t

e2t + e−2t
, (98)

ce qui est bien équivalent à (91).

On pourrait améliorer le résultat en diminuant h ou en choisissant une méthode d’ordre supérieur,

Runge Kutta d’ordre 2 ou 4 par exemple. Voir figure 14 page suivante.
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Figure 14. La solution exacte et quelques solutions aprochées.
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