

Mathématiques Pour l'Ingénieur MPISIR

Automne 2025

QCM (maison) pour le 08 octobre 2025

Important:

Les questions faisant apparaître le symbole \clubsuit peuvent présenter aucune, une ou plusieurs bonnes réponses. Les autres questions ont une unique bonne réponse.

Ce QCM est en principe modifiable à l'écran et vous devez cocher les cases manuellement. En cas d'erreur, vous pouvez les cocher ou décocher autant de fois que nécesaire.

Corrigé

Un corrigé sera disponible sur http://utbmjb.chez-alice.fr/Polytech/index.html

HAUNIME Anne

Chapitre 1, section 1.2

Question 1 Si f est une fonction définie en x_0 , elle est nécessairement continue en x_0 .

C'est faux C'est vrai

Question 2 \clubsuit La fonction $x \mapsto \sin(x)/x$ est continue sur \mathbb{R} .

C'est vrai si on la prolonge par continuité par la C'est vrai valeur 0 en zéro. C'est faux

C'est vrai si on la prolonge par continuité par la

Aucune de ces réponses n'est correcte.

valeur 1 en zéro.

Question 3 La fonction signe est continue sur \mathbb{R} .

C'est vrai C'est faux

Chapitre 1, section 1.3

 ${\bf Question} \ {\bf 4} \qquad {\rm Si \ une \ fonction \ est \ d\'{e}rivable \ en \ } a, \ {\rm on \ a \ alors}$

$$f(b) = f(a) + (b - a)f'(a) + o(b - a).$$

C'est vrai C'est faux

Question 5 \bullet Pour $\alpha \in]0,1[$, la fonction $f: x \mapsto x^{\alpha}$ est dérivable sur

 \mathbb{R}_{+}^{*} \mathbb{R} \mathbb{R}_{+} Aucune de ces réponses n'est correcte.

Question 6 \clubsuit Soit $a \in \mathbb{R}_+^*$. Soit une fonction est continue et positive sur [0, a], nulle en 0 et en a, non identiquement nulle sur]0, a[.

Alors

elle admet un maximum positif sur [0, a].

elle admet un maximum strictement positif sur [0, a]

elle admet un maximum positif sur]0,a[.

elle admet un maximum strictement positif sur]0,a[.

elle admet un maximum positif sur [0, a], atteint en un unique point.

elle admet un maximum strictement positif sur [0, a], atteint en un unique point.

elle admet un maximum positif sur]0,a[, atteint en un unique point.

Aucune de ces réponses n'est correcte.

Question 7 Un étudiant zélé tient le raisonnement suivant : "On considère f une fonction dérivable en a. D'après l'équation (1.17a) du cours, on a

$$f(b) = f(a) + (b - a)f'(a) + (b - a)\varepsilon(b) = f(a) + (b - a)f'(a) + \eta(b)$$

où $\eta(b)=(b-a)\varepsilon(b)$ qui tend vers 0 si b tend vers a d'après l'équation (1.17b), du cours. Ainsi, on peut dire que f est dérivable en b ssi

$$f(b) = f(a) + (b - a)f'(a) + \eta(b), \tag{1a}$$

avec
$$\lim_{b \to a} \eta(b) = 0,$$
 (1b)

ce qui se substitue à l'équation (1.17) du cours." Ce raisonnement est correct.

non. oui.

Chapitre 1, section 1.4

Question 8 Une fonction qui admet un développement limité à l'ordre 5 en un point x_0

admet un développement limité à l'ordre 6

admet un développement limité à l'ordre 3

en ce point.

Question 9 La fonction $f: x \mapsto (\ln(1+x))^2$ admet à l'ordre 4, en zéro le développement limité suivant

$$x^2 - x^3 + o(x^3) (1)$$

$$\frac{1}{x^2} - x^3 + \frac{11}{12}x^4 + o\left(x^4\right) \tag{2}$$

$$1 + x^2 - x^3 + \frac{11}{12}x^4 + o\left(x^4\right) \tag{3}$$

$$x^{2} - x^{3} + \frac{11}{12}x^{4} + o\left(x^{4}\right) \tag{4}$$

Question 10 La fonction $f: x \mapsto \exp(\sin x)$ admet à l'ordre 3, en zéro le développement limité suivant

$$1 + x + o(x) \tag{1}$$

$$1 + \frac{1}{x}x + \frac{1}{2}x^2 + o\left(x^3\right) \tag{2}$$

$$2 + x + \frac{1}{2}x^2 + o\left(x^3\right) \tag{3}$$

$$1 + x + \frac{1}{2}x^2 + o\left(x^3\right) \tag{4}$$

Question 11 La fonction $f: x \mapsto \sin^6 x$ admet à l'ordre 6, en zéro le développement limité suivant

$$x^5 + o\left(x^6\right) \tag{1}$$

$$x^6 + o\left(x^6\right) \tag{2}$$