

Mathématiques Pour l'Ingénieur MPISIR

Automne 2024

QCM du 23 janvier 2025
Durée : 20 minutes
Documents autorisés : OUI ⊠ NON □ Autorisés : Polycopiés de l'UE, notes manuscrites. Interdits : Écrans (sauf tablette et ordinateurs en mode avion), Livres et Internet
Calculatrice autorisée : OUI \boxtimes NON \square Tout $type$
Important : Les questions faisant apparaître le symbole & peuvent présenter aucune, une ou plusieurs bonnes réponses. Les autres questions ont une unique bonne réponse.
Les réponses seront données dans la feuille de réponse (à la fin du sujet).
Corrigé
Un corrigé sera disponible sur http://utbmjb.chez-alice.fr/Polytech/index.html
$ \textbf{Question 1} \qquad \text{La méthode d'intégration élémentaire du point milieux sur l'intervalle } [a,b] \text{ est donnée par } $
Explication : Voir le tableau 4.1 du polycopié de cours.
Question 2 La méthode composite de Simpson est plus précise que la méthode composite du rectangle.
A C'est faux. Cest vrai.
$Explication:$ Voir le tableau 4.4 du polycopié de cours qui fait apparaître une erreur en h^4 pour Simpson contre une erreur en h pour le rectangle.
Question 3 La méthode élémentaire de Simpson est plus calculatoire que la méthode élémentaire du rectangle.
A C'est faux. Cest vrai.
Explication: Voir le tableau 4.1 du polycopié de cours qui fait apparaître trois évaluations de f pour Simpson contre une seule pour le rectangle.
Question 4 La méthode composite de Simpson est plus calculatoire que la méthode composite du rectangle.
A C'est faux. Cest vrai.
Explication : Voir le tableau 4.3 du polycopié de cours qui fait apparaître $2 + 2(N - 1) + 4N = 6N$ évaluations de f pour Simpson contre N pour le rectangle.
Question 5 L'intégrale définissant la transformée de Laplace est une intégrale sur l'intervalle :
Explication: Voir les définitions 5.2 et 5.2.
Question 6 Si g est une application (causale) et $p \in \mathbb{C}$, on a l'équivalence entre l'existence des deux intégrales $\int_0^{+\infty} e^{-pt} g(t) dt$ et $\int_0^{+\infty} \left e^{-pt} g(t) \right dt$

 $\boldsymbol{Explication}$: Voir la remarque 5.5.

C'est vrai.

B C'est faux.

Question 7 \clubsuit Si g est une application (causale) et α son indice de sommabilité, alors $\mathcal{L}(g)(p)$ est défini pour tout complexe p tel que

- $\operatorname{Re}(p) > \alpha$.
- $p \in]\alpha, +\infty[.$
- C Re $(p) < \alpha$.

- $\overline{\mathrm{D}} \mathrm{Im}(p) < \alpha.$
- E Aucune de ces réponses n'est correcte.

Explication: Voir le point 2.

 $\begin{array}{ll} \textbf{Question 8} \clubsuit & f \text{ est une fonction d'ordre exponentiel, s'il existe } \sigma \in \mathbb{R} \text{ et } (M,T) \in (\mathbb{R}_+)^2, \text{ tels que} \\ \blacksquare \ \forall t \geq T, \quad |f(t)| \leq Me^{\sigma t}. & \boxed{\mathbb{D}} \ \forall t \geq T, \quad f(t) \leq Me^{\sigma t}. \\ \blacksquare \ \forall t \leq T, \quad |f(t)| \leq Me^{\sigma t}. & \boxed{\mathbb{E}} \ Aucune \ de \ ces \ r\'eponses \ n'est \ correcte. \\ \end{aligned}$

- $\forall t \geq T, \quad |f(t)| \leq Me^{\sigma t}.$ $\exists \forall t \leq T, \quad |f(t)| \leq Me^{\sigma t}.$ $\exists \forall t \leq T, \quad |f(t)| \leq Me^{\sigma t}.$ $\exists \forall t \geq T, \quad |f(t)| = Me^{\sigma t}.$

Explication: Voir la définition 5.8.

Question 9 \clubsuit Soit f une fonction continue sur \mathbb{R} , sauf éventuellement en t=0 où $\lim_{\substack{t\to 0,\\t>0}} f(t)=f(0^+)$ existe. On

suppose en outre que f' est une fonction continue par morceaux qui admet une transformée de Laplace, alors, en notant α et α' les indices de sommabilité de f et f', on a pour tout $p \in \mathbb{C}$ tel que $\mathrm{Re}(p) > \max(\alpha, \alpha')$

 $\mathcal{L}(f')(p) = p\mathcal{L}(f)(p) - f(0^+)$

D Aucune de ces réponses n'est correcte.

Explication: Voir le théorème 5.19.

Question 10 Soit $g(t) = \int_0^t f(u) du$ la primitive de fqui s'annule en 0, alors, en notant α l'indice de sommabilité de f, on a pour tout $p \in \mathbb{C}$ tel que $\text{Re}(p) > \max(\alpha, 0)$

 $\mathcal{L}(g)(p) = \frac{\mathcal{L}(f)(p)}{p}$

 $B \mathcal{L}(g)(p) = p\mathcal{L}(f)(p)$

Explication: Voir le théorème 5.20.

+1/3/58+

Feuille de réponses :

Les réponses aux questions sont à donner exclusivement sur cette feuille.

Il est préférable que vous utilisiez un stylo noir ou bleu ou un crayon à papier de type B ou HB. Vous devez noircir complètement ¹ les cases choisies. Les réponses données sur les feuilles précédentes ne seront pas prises en compte.

0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
$\overline{}$		-	$\overline{}$	-	_	-	_
5	5	5	5	5	5	5	5
_	6	_		_			5 6
6	_	6	6	6	6	6	=
6 7	6	6 7	6 7	6 7	6 7	6 7	6

\leftarrow	_	code	ez votre	e num	éro	d'étudiar	nt ci-contr
et	ins	scrivez	votre	nom	et	prénom	ci-dessou
			énom :				

Question 1 : B C

Question 2 : A

Question 3 : A

QUESTION 4 : A

QUESTION 5 : C D E

Question 6 :

Question 7 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

Question 8 : B C D E

Question 9 : B C D

Question 10 : B

Polytech Automne 2024 MPISIR : QCM du 23 janvier 2025 Jérôme Bastien Feuille de réponse

^{1.} Dans ce cas, vous pouvez effacer la/les case(s) avec la gomme ou la recouvrir de ruban correcteur et vous n'avez pas d'autre possibilité de corriger une case cochée par erreur.