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Model of joint angle displacement: application to vertical jumping

Thomas Creveaux, Jérome Bastien & Pierre Legreneur

Centre de Recherche et d’Innovation sur le Sport, Université de Lyon — Lyon 1.
thomas.creveaux @ gmail.com

Despite many authors suggest that movement control may be kinematic based, there is actually no such model
able to reproduce the features of open-loop dynamic movements. This research focused on both the development
of a mathematical model of joints angles displacements and the confrontation of this model to experimental data
obtained in vertical jumping. Through an optimization procedure, the parameters of the model were set to fit
experimental data using sigmoid function. Differences between modeled and experimental CoM positions were
greater on the vertical than horizontal axis (p<0.001). Proximal joints angles displacements were best
reproduced. The results could be explained by the distribution of the limbs masses and the necessity to fit closely
the experimental take-off conditions. This research showed that a kinematic based model using a small set of
kinematic parameters was able to reproduce the experimental vertical jumping.

Keywords: vertical jumping, modeling, optimization, joint displacement, sigmoid, kinematics

INTRODUCTION

The displacement of a human body in the gravity field has to take into account two
constraints (Ingen Schenau, 1989). The anatomical one implies zero angular velocities when
maximal amplitudes are reached whereas the geometrical one represents the conversion of the
rotational kinetic energy of joints into translational kinetic energy of the Centre of Mass
(CoM). Although there are evidences that these constraints are taken into account in
movement planning, the question concerning the controlled parameters by the central nervous
system remains open.

Results of dynamical movements’ simulation using muscles activations optimization
procedure are consistent with experimental data and provided original results (Bobbert & van
Soest, 1994). However, many studies suggest that the movement may be controlled through
kinematic parameters (Wolpert et al., 1995, Moran & Schwartz, 1999). To date, there is no
kinematic based model able to reproduce the dynamical movement features. Thus, the aim of
this study was to develop and validate a kinematic based model of the vertical jump.

METHODS
The skeletal model was defined as a 4 rigid bodies system, i.e. the foot, the shank, the

thigh and the Head-Arms-Trunk system (HAT). The time history of each joint angle during
the movement was defined as a sigmoid: Vt < t;, 6(t) = 6;; Vt > t7, 6(t) = 6;
t—t;

vt € |t te[, 6(t) = 6; + (65 — 6,)0(F) where F = =

Vi€ 10,1 o(®) = pl6(D] = terf((LE) + L 6D = n (%,) and a = G~1(w)

The scale parameters 6;, 0y, t;, tr, are respectively the initial and final positions of the
joints angles and the instants defining the beginning and end of the displacement. a, pand s
define the shape of the joint angle time history from ¢;, to t;. This model holds the following
properties: (t;) = 6; ; H(tf) =0;;0(t;) = 9(tf) =6(t) = é(tf) = 0 so that the dynamic
parameters, i.e. velocity and acceleration, are continuous and the anatomical constraint is
satisfied. Furthermore, o (%)is non-decreasing on [0,1] and holds an unique velocity peak K at

t=ty. At last, acceleration is successively positive and negative before and after the velocity
peak.

The segmental angle of the foot and the joints angles of the ankle, knee and hip were
modeled using 6(t) functions. Take-off was defined as the first instant where the CoM



vertical acceleration reaches -9.81 m.s™. Using a least square minimization procedure, the
parameters of the model were set to fit best experimental kinematics of 33 vertical jumps.
Optimization was performed on CoM and joints linear positions from the beginning of the
impulse to the instant where the CoM reaches its highest position. The consistence of
modeled and experimental data was then quantified.

RESULTS

The maximal differences observed between the CoM coordinates of both experimental
and modeled data were greater on the horizontal axis (0.9 cm) than the vertical one (0,3 cm,
p<0.001). Concerning joints angles, maximal differences measured from ¢; to # for the ankle
(6.9°) were higher (p<0.001) than the values obtained at the knee (3.4°) and hip (2.7°) (Fig.1).
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Figure 1. Left to right : experimental (stars) and theoretical (lines) time histories of hip, knee and ankle joints’
displacement. The vertical dashed line indicates the take-off instant.

DISCUSSION

The results of the model were consistent with the experimental data during the
impulse. After take-off, hip and knee presented oscillatory phases before attaining the top of
the CoM flight. The model was not able to reproduce these variations, because of the nature
of the equation of the joints’ time history. However, these variations do not affect the
trajectory of the CoM as it’s completely defined at take-off instant by the characteristics of its
velocity vector and its position.

In conclusion, this theoretical study showed that dynamic multi-joints movements
could be successfully reproduced with a kinematic based model defined by a small set of
parameters. Moreover, the general model of joint’s displacement presented in this paper
should be used successfully to fit experimental data of animal displacement.

On the hand, this study allowed to consider the joint’s displacement model as valid for
further kinematic based model simulation of dynamic movement like vertical jumping in
humans.
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