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Introduction

The rheological Persoz’s gephyroidal model, made out of some
elementary rheological models (dry friction element and linear
spring) can be covered by the existence and uniqueness theory for
maximal monotone operators. Moreover, classical results of
numerical analysis allow to use a numerical implicit Euler scheme,
with order of convergence one. Some numerical simulations are
presented.
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The rheological Persoz’s gephyroidal model
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We consider the model involving
1 four springs with stiffness k0, k1, k2 and k3

2 three St-Venant elements with threshold α1, α2 and α3

3 one material point of mass m
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Main idea

The rheological Persoz’s gephyroidal model is governed by
differential inclusion of the form:{

Ẋ (t) + MA(X (t)) 3 G (t,X (t)), a.e. on ]0,T [,

X (0) = X0,

where

M is a invertible matrix

X is a function from [0,T ] in Rp

A is a maximal monotone graph on Rp

G a function from [0,T ]× Rp in Rp
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Notations

We introduce the classical following notations (e.g. as in [BSL00] :

for i ∈ {0, ..., 3}, ki −→
displacements ui

forces fi

for i ∈ {2, 3}, αi −→
displacements vi

forces gi

k1 and α1 −→
displacements v1 = u1

forces g1

Let x be the abscissa of material point with mass m, and F
be the external force, applied to this point.
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Maximal monotone used graph

We consider σ and β the multivalued maximal monotone graphs
defined by

σ(x) =


−1 if x < 0,

1 if x > 0,

[−1, 1] if x = 0.

β(x) =


∅ if x ∈]−∞,−1[∪]1,+∞[,

{0} if x ∈]− 1, 1[,

R− if x = −1,

R+ if x = 1.

According to [Bre73], these graphs are maximal monotone and

σ = ∂|.|, β = ∂ψ[−1,1], σ = β−1.
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The differential inclusion governing the model

After computation, we obtain

Ẋ (t) + M∂ψC(X (t)) 3 G
(
t,X (t)

)
,

where

X is a function from [0,T ] in R5

M is a symmetric positive definite matrix (under
some assumptions)

∂ψC is the subdifferential of the indicatrix of a closed
convex of R5 for the scalar product defined by

< X ,Y >M = XTM−1Y ,

G is a regular function from [0,T ]× R5 in R5
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Existence and uniqueness

Theorem (Existence and uniqueness)

Let (αi )1≤i≤3 be positive numbers, (ki )0≤i≤3 be positive numbers
satisfying

1 k0 = 0 and for all i ∈ {1, 2, 3}, ki > 0

2 or k0 > 0 and at least two numbers among k1, k2 and k3 are
non negative.

There is a unique solution X in W 1,∞(0,T ; R5) for the previous
differential inclusion.
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Main idea of the proof

The proof of this result is based on the following idea : if R5 is
equipped with its canonical scalar product, and with another scalar
product

< X ,Y >M = XTM−1Y ,

where M is symmetric positive definite, then we can relate the
sub-differential ∂φ of φ relatively to the canonical scalar product
and the sub-differential ∂Mφ relatively to <,>M by

∂Mφ(X ) = M∂φ(X ).

We apply then results proved in [BS00, BS02].
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Numerical scheme

Theorem

Let N be an integer, h = T/N, hp = hp and X p defined by

X p+1 = projC,M−1 (X p + G (tp,X
p)) ,

where projC,M−1 is the orthogonal projection on the convex C for
the previously defined norm on R5. Denote Xh ∈ C 0

(
[0,T ]; R5

)
the linear interpolation at time tp = hp of the solution X p. The
numerical scheme is of first order.
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Quasistatic problems

In the quasistatic case, the mass m can be equal to zero.
Existence, uniqueness and numerical scheme hold.
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Numerical simulations : hysteresis cycle
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Numerical simulations : Specificity of gephyroidal studied
model
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