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Abstract. The rheological Persoz’s gephyroidal model, made out of some elementary rheo-
logical models (dry friction element and linear spring) can be covered by the existence and
uniqueness theory for maximal monotone operators. Moreover, classical results of numerical
analysis allow to use a numerical implicit Euler scheme, with order of convergence one. Some
numerical simulations are presented.
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Jérôme BASTIEN and Claude-Henri LAMARQUE

1 Introduction

In previous works [1, 2, 3, 4, 5, 6] dynamical behaviours of mechanical systems involving
friction have been studied. Associations of springs, dashpots, Saint-Venant (also called Maxwell
elements) in parallel or in series have been investigated. In the book [7] Persoz introduced
similar nonlinear models for quasi-static behaviours. He denoted models M (for Maxwell) or K
(for Kelvin). Finally, he distinguished two classes of associations of such elements:

• the first one (involving M or K) can be modelled by parallel or series associations: It has
been called mixed models,

• the second one has been called general models or gephyroid models.

Among these latter ones, Persoz proposed a very simple –especially significant and clearly non-
mixed – gephyroid model of quasi-static behaviour.

This work is based on [8]. Here we examine this model in general. The paper is organised
as follows: in Section 2, model is described. In Section 3, numerical scheme is presented based
on mathematical results. In Section 4, we mainly propose numerical example of dynamical
behaviour.

2 Description of the model
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Figure 1: The studied model with forces fi and gi and displacement ui, vi and x.

We introduce the model of figure 1. The notation are analogous to those of [1] :

• For all i ∈ {0, ..., 3}, the displacement of spring with stiffness ki is denoted by ui and the
force exerted by this spring is denoted by fi ;
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• For all i ∈ {2, 3}, the displacement of St-Venant elements with threshold αi is denoted
by vi and the force exerted by this element is denoted by gi ;

• Since the spring with stiffness k1 and the St-Venant element with threshold α1 are con-
nected in parallel, we do not introduce the displacement v1, equal to u1 and we denote by
g1 the force exerted by this St-Venant element;

• Let x be the abscissa of material point with mass m, and F be the external force, applied
to this point.

We consider σ the multivalued graph sign defined by

σ(x) =

⎧⎪⎨
⎪⎩
−1 if x < 0,

1 if x > 0,

[−1, 1] if x = 0.

(1)

The reader is refered to [9] for notions of multivalued operator. Following [1], the different
equations governing the model are given below. First, the geometrical connexion is written as:

u0 + v3 + u2 = x, (2a)

v2 + u3 + u0 = x, (2b)

u1 + u3 = v3. (2c)

The constitutive laws of springs and St-Venant elements are:

∀i ∈ {0, ..., 3}, fi = −kiui, (2d)

∀i ∈ {2, 3}, gi ∈ −αiσ (v̇i) , (2e)

g1 ∈ −α1σ (u̇1) . (2f)

The equilibrium leads to

g2 + f1 + g1 = f3, (2g)

g3 + f3 = f0, (2h)

g3 + g1 + f1 = f2, (2i)

mẍ = f0 + F. (2j)

Let us introduce β the inverse graph of σ, defined by

β(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∅ if x ∈] −∞,−1[∪]1, +∞[,

{0} if x ∈] − 1, 1[,

R− if x = −1,

R+ if x = 1.

(3)

We consider the convexe C of R
3 defined by

C = [−α2, α2] × [−α3, α3] × [−α1, α1], (4)

3
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and we consider the multivalued operator from R
3 to R

3 defined by

∀W = (w1, w2, w3) ∈ R
3, A(W ) = β

(
W1

α2

)
× β

(
W2

α3

)
× β

(
W3

α1

)
. (5)

By elimination of some unknows, we prove that (2) is equivalent to the system⎧⎪⎨
⎪⎩

ẋ = y,

ẏ = 1
m

(F − δx + EW ) ,

Ẇ + KA(W ) � −k0Uy,

(6)

where K is the matrix defined by

K =

⎛
⎝ k0 + k2 k0 −(k0 + k2)

k0 k0 + k3 −(k0 + k3)
−(k0 + k2) −(k0 + k3) k0 + k1 + k2 + k3

⎞
⎠ , (7)

and E and W are given by

U =

⎛
⎝ 1,

1,
−1

⎞
⎠ , W =

⎛
⎝g2

g3

g1

⎞
⎠ , E = k0U

T K−1. (8)

System (6) can be written under the form{
Ẋ(t) + MA(X(t)) � G

(
t, X(t)

)
, a.e. on ]0, T [,

X(0) = X0 = (x0, ẋ0, w1,0, w2,0, w3,0),
(9)

where M is a matrix, G a function from [0, T ]×R
5 to R

5, and A is a multivalued operator from
R

5 to R
5.

3 Existence and uniqueness results and numerical scheme

The matrix K defined by (7) is symmetric positive definite if and only if the numbers
(ki)0≤i≤3 satisfy the following assumption

k0 = 0, ∀i ∈ {1, 2, 3}, ki > 0, (10a)

or

k0 > 0 and at least two numbers among k1, k2 and k3 are non negative (10b)

and then, according to results proved in [1, 4, 3], the solution (6) (or of (9)) exists and is unique.
According to results proved in [1, 3, 4], we considere the numerical scheme

xp+1 = hyp + xp, (11a)

yp+1 =
h

m
(F (tp) − δxp + EW p) + yp, (11b)

W p+1 = projC,K−1 (W p − hk0y
pU) , (11c)

where projC,K−1 is the orthogonal projection on the convex C defined by (4) for the norm on R
3

defined by
∀W ∈ R

3, ‖W‖K−1 =
√

W TK−1W. (12)

This numerical scheme converges to the solution of (6), with an error in O(h).
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4 Applications

4.1 Quasistatic problems

In the quasistatic case, the mass m can be equal to zero. This case can be treated by the
proposed method (existence, uniqueness, numerical scheme). The difference is that the problem
is expressed in R

4 instead in R
5, as (6).

4.2 Numerical simulations for dynamical case

Parameters αi and ki and initial conditions are defined by

∀i ∈ {1, 2, 3}, αi = i, (13a)

∀i ∈ {0, 1, 2, 3}, ki = 1, (13b)

∀i ∈ {1, 2, 3}, gi,0 = 0, (13c)

and we choose

x0 = 0, ẋ0 = 0, (14a)

m = 1, (14b)

T = 80, h = 10−3. (14c)

The imposed force is defined by

F (t) = 200 sin(6t). (14d)
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Figure 2: The graphs (t, gj(t)) for t ∈ [ti, tf ] and j ∈ {1, 2, 3}.

We plot the graphs (t, gj(t)) for t ∈ [ti, tf ] and j ∈ {1, 2, 3} in Fig. 2. We can observe the
specificity of the gephyroidal studied model. Indeed, in Fig. 2 we can see opposite behaviours
of functions g1, g2 vs g3. As g2 and g3 reach their maximum α2 and α3, then g1 leaves its
minimum −α1. Reciprocally, on other intervals, as g2 and g3 reach their minimum −α2 and
−α3, then g1 leaves its maximum α1. From a mechanical point of view, is means that there
exist some intervals where dry friction elements 2 and 3 slip in a direction, whereas the dry
friction element 1 sticks still in the opposite direction.
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5 Conclusion

In this paper, we investigated mainly a simple example of gephyroid model. Wee can see
that the dynamical behaviour of such a model is different from a classical mixed model since
displacements can exhibit a non classical behaviour (traction when solicitation corresponds to
compression e.g.). Mathematical, numerical and main physical properties have been presented;
the latter ones are coherent with [7].

REFERENCES
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[5] Jérôme Bastien, Guilhem Michon, Lionel Manin, and Régis Dufour. An analysis of
the Masing and modified Dalh models. Application to a belt tensioner. To appear in
Journal of Sound and Vibrations, see http://utbmjb.chez-alice.fr/autres_
rubriques/tendcen_JBGMLMRD_2005.pdf% , 2007.
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