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ABSTRACT. A planar polyarticulated system was modelised by poinfaihg the joints and a last point,
linked to the last solid. The surface swept by the polpt has its boundary defined by 3 kinds of particular
configurations. These boundaries are classically charsetein the litterature by symbolically vanishing some
determinants of jacobian of position functions. Howeveis thethod requires the resolution of important sets of
non linear equations.

So, the main purpose of this paper is to propose a pure geioalegsolution of the problem in a planar case,
in order to avoid these computations. In this aim, a simplyngetrical interpretation of jacobian’s singularities
is used. This new formulation is applied to a human free ngarmm for describing the workspace of its distal
extremity (i.e. the finger).

The relevance of this work in sport locomotion is importdntleed, it allows to predict the degrees of freedom
recruted for a given mouvement as a function of the positichetarget in a given workspace.

1. INTRODUCTION

This work correspond to a short version of submitted or aeckprevious works [BLM06, BLMO7].

In the aim to reach a target or realize an explosive movenianjumping, the degrees of freedom (Dof)
of the articular chain allow the recruitment of an infinityngbination of these ones. Each combination of
Dof define a specific workspace. Thus, the knowledge of th@ipoof the target to reach could allow to
predict the articulations engaged in the movement. For glgthe displacement of the distal extremity of an
articular chain of segments, like a human arm, result fragrtridinsformation of rotational kinetic energy of the
involved joints in linear kinetic energy of the extremitye(i the finger). The space defined by this extremity for
a finite number of degree of freedom is so-called «workspacéeie finger. The boundary to the workspace
is called the «reach envelop» [Mol98].

Some works study the boundaries [HS05, HS02, HS00, CZMOG69®NECB06, MGM98], however,
as far as we know, no analytical solution of this descriptisnwell as automatic method for describing the
boundaries are available in the literature.

In dimensionn € {2, 3}, the workspace is considered as the range of a convex pelytR? (n < p)
by a differentiable functio®,,. Herep is the number of independant parameters. In biomechanicdotics,
one of most known method for determining this boundary is itevthat jacobian of functio®,, is necessary
singular on the boundaries [AMAYH97, AMY97, AMYS98, AMYZT®) DPHO1]. To obtain the different
barriers defined by this singular jacobiandgf, equations are given by vanishing all determinants of jeaob
This computation are done through symbolic calculationmifications allow to improve the algorithms
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without resolving the problem of symbolic calculation. &l this method is very expensive in calculation
time, espacially when the number of degrees of freedom asere

So, the main purpose of this paper is to propose an algoritddscribing the surface as joining arcs
of circles, determinable through simple calculation rulesthis aim, a simple geometrical interpretation of
jacobian’s singularities will be used far= 2.

2. THEORITICAL BASIS AND PRESENTATION OF THE STUDIED PROBLEM

Let (O,Z,]) be a reference frame, an integer greater than or equal to(z-,)KKp a p non negative
+ — . .

numbers and®; )199 and (6; )19@ 2p angles satisfying

Vie{l,...p}, —m<0; <6 <m. Q)

Q
=

FIGURE 1. The considered planar system.

We define the workspace as the set of poitifssuch as (see Fig. 1)

—
Ag =0, (J, 0A1) =01, (2a)
Vi € {2, ...,p}, (Ai,QAifl,AiflAi) = 91‘, Vi € {1, ...,p}, AiflAi = li, (2b)

with the constraints

177

Vie{l,..,p}, 0;¢€[07,0]]. (2¢)

p
We consider functior®,, from domainF’ = H[e.— ;"] to R? defined by

=1
V(01,.,0,) € F, ®,(01,...0,) = A,. ©)

All the elementsz = (64, ...,0,) of domain F' satisfy (2c). Thus, according to constrained optimization
technics, consider the following definition :



Definition 1. Forallz = (61, ....,0,) € F,foralli € {1,..., p}, thei-constraint (2c) is active #f; € {0, ,0;"
and inactive if9; €0, 6" [, which means that; € {0; ,0." } is saturated and; €]0; , 0" [ is free.

177

We try to determine the topological boundd@p = D\ D of D = ®,(F). SinceF is continuous and”

is compact,D is compact andD = D \ lo)
We refer to Appendix A, where some recalls about the jacobfah, on the boundary of" are given.
Thus, results of the previous appendix will be applied with® = ®,,, p > 2 andn = 2.

3. BEHAVIOUR OF JACOBIAN OF APPLICATION(I)p ON THE BOUNDARY OF WORKSPACE

Refering to Definition 1, we will present a consequence o teimma fundamental for the geometrical
interpretation of results of Appendix A.

Letx = (64,...,6,) andy = &, (x) such that the numbey of free components of belongs tof2, ...p}.
Denotel = {iy,...,i,} the set of integers < i; < ip < ... < iy < p corresponding to free components
of zx andJ = {ji, ..., jp—q} the set of integers < j; < jo < ... < jp—q < p corresponding to saturated
components of. The sets/ and.J define a partition of 1, ..., p} and we have, by using Proposition 7 with
n=2and® = ¢,

Proposition 2. The elemeny = &, (61, ..., ,) belongs taS; U S if and only if
theq + 1 pointsA4;, 1, Aj,—1, e i1 and A, are aligned. 4)

Remarkl. In all this paper, it is assumed that, for all pair of integérg), if i # j, thenA4; and A; are
distinct, which holds in biomechanics and robotics.

Remark2. The geometrical of idea of Proposition 2 is very simple. pieposed for three aligned points in
[MGMB98], but it is not generalized. It permits to write thegatithm of description ofS = S, U S U Sy,
presented in Section 4 and in [BLM06, BLMOQ7].

Thanks to proposition 2, we can prove that that pgibelongs taS; U Sy, if and only if:

— each of saturated componetifs for 1 < k < p — ¢ is known;

— and each of free componertts for 2 < k < ¢ is known according to the previous saturated compo-
nents;

— and only the free componefy, describes the interv@&)‘,&j;[.

11
4. GEOMETRICAL DEFINITION OF S = S| US| U S|;1 AS FINITE UNION OF ARCS OF CIRCLES

Proposition 3. The partS); is a finite union of arcs of circles and each of them is definedblmﬁl, ey 851,
[0;,0:],0,41, ..., 6,) wherei describes{1, ..., p} and

Vji#i, 0;€{6;,0}. (5)
The new and original results of the paper are the two follgwin

Proposition 4. Ifforall j € {2, ..., p}, 0;9; < 0thens, is the arc of circle defined by, (167, 6;"[, 0,0, ..., 0),
elsesS) is empty.

In the second case; corresponds to the maximal extension of the arm. The péjndescribes a circle
of radius)_?_, I;, which is the greatest possible distance to the origin .
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FIGURE 2. Simulations corresponding to cases 1 (a) and 2 (b); tleediswept volume is
ploted in yellow,S) is ploted in blueS), is ploted in red and);, is ploted in green.

Proposition 5. There exist an integed! € N, m integers(pm); << of {1, ...,p}M, M elements oRP~ 1,
(RN ...,Ggl)ngM and2m numbers(6,,, 0.4}, <1, (With 6, < 6,5) such thatSy, is the
finite union of arcs of circles defined by

U O, (07", ... 0 1,100, O[O0 (1, O). (6)
1<m<M

5. NUMERICAL SIMULATIONS

Now will be presented some numerical simulations with thepghofS = S, U S U Sy

| cases p | Segment length / body height(9;),_,_ () | (6;),_,, () | figures]
1 |2]0.146,0.108 130,-10 | 0,25 2@)
2 310.186,0.146 ,0.108 -60, -130, -10]| 120, 0, 25 2(b)

TABLE 1. For simulation, one subject of 1.80 m height is considetazhgths of the upper
limb were determided from anthropometric data [Win90]. $hsegment lengths are pre-
sented as percent of total body height (0.108, 0.146 an®@at&e hand, forearm and upper-
arm respectively). Angles correspond to minima and maxifijaints degrees of freedom of
human upper limb, i.e. shoulder abduction/adductiet(/120°), elbow flexion/extension
(—130°/0°), wrist abduction/adduction<10° /25°).

(1) Case 1 corresponds to forearm and hand displacements;
(2) Case 2 corresponds to upperarm, forearm and hand despéants.

Each figure presents the computed arcs of circles, ang, for2, the discret swept volume obtained by
ploting the setb, (47", ..., 62") where(A7", ..., 67) belongs to a finite set 6, 6] x [0, 65 x ... x [0, , 6]
On Figures 2, the par$) is included on the boudary of the workpace, which is not treedar.S) and

Sui . Indeed, the geometrical condition for describing the laaum is necessary but non sufficient. Thus, some



arcs of circles have to be remove, aimed to describe only dnedary of the workspace. Theses difficulties
are also pointed out by [AMAYH97, AMY97, AMYS98].

6. CONCLUSION

The part of the boundary is traditionally written under toeni .S = S,US,US); . The partS) corresponds
to points for which only one of constraint is inactive. Thetp®, and.S);, corresponds to points for which at
least two constraints are inactive.

This paper shows that the resolution of the problem undebjac formulation is not necessary. Indeed,
considering that all the points for which the constraintsiaactive are aligned suffied to describe the workpace
boundaries.

Moreover, this geometrical formulation condition givesteepomenological description of the boundary,
which locally corresponds to a position for which the coesadl joint is partially extended.

APPENDIXA. RECALLS ABOUT FUNDAMENTAL THEORETICAL RESULTS

The aim this appendix is to remain some theoretical fundéamhéemmas, where it can find presentation
for example in [AMYZT04, AMAYH97, AMY97].
Let p andn be two integers satisfying > n > 1 and® a function fromR? to R”, whose domain is a

compact sef’. ConsiderD = ®(F) andoD = D \ D the boundary oD.
Assuming thatd is of classC' on F' and thatF is the convex polytope dk? defined by

P
F = []loi, 81, (7)
i=1

whereq; < ;.
The differential and the jacobian matrix ®fat = are identified i. e.:

V(i,j7) € {1,...,n} x{1,...,p}, (d®(x))

The fundamental following results are:

9¢i

i - 8.Tj

(). (8)

Lemma 6. Let z be an element of such that®(x) belongs tooD. Letq € {0,...,p} the number of free
components af. There are three exclusive cases:
(1) If ¢ = p, then
rank (d®(z))<n — 1. 9

(2) If n < ¢ < p—1, denote byi®(z) the submatrix ofi®(z), where all the columns corresponding to
the saturated components:ofire removed. Then

rank (d@(a:)) <n-—1 (10)

(3) If ¢ < n — 1, there is no condition on the jacobian.

Proposition 7. The three surfaces§,, S and.Sy, of R™, corresponding to the three exclusive cases of Lemma
6, are defined by:

O(x) €S <= q=np, (11a)
O(x)e S <= qge{n,..,p—1}, (11b)
O(x) e Sy <= qg<n-1. (11c)



Then, the boundargD of D is included inS = S, U S, U Sy

These results give a necessary but non sufficient conditiobeing on the boundary @b.
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